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Abstract

We describe a piece of web-based software for use in abstract algebra courses, and several
ways it can be used to help students work with examples of groups to understand concepts of the
course.

Every math teacher knows that working with examples is important. That said, math teachers may
underestimate the importance of examples in their teaching. Mathematicians are particularly adept
at thinking abstractly – it is their stock in trade. However, psychologists have found that in general,
people naturally generalize from specific examples more readily than they make simple logical de-
ductions. Nisbett and Borgida [2] summarize their findings: “Subjects’ unwillingness to deduce the
particular from the general was matched only by their willingness to infer the general from the par-
ticular”.1 Human thinking works much more easily in the wrong direction from what is needed for
mathematical rigor. The implication is that use of examples is much more important than one would
think.

Here we describe various ideas in group theory which can be illuminated by looking at group
tables and subgroup diagrams of specific groups. Technology can facilitate the process by giving
students ready access to many groups. There are different tools one may use. We will describe the
Group Calculator, a web-based tool which allows the user to work with a fairly large collection of
groups, including all groups of order less than 32. This puts a wealth of examples at the fingertips of
students.

The only other software we are aware of with the same capabilities, whether free or commercial,
needs to be installed on the user’s computer. Web-based software does not depend on the user’s
operating system, available memory, or the willingness/ability to install the software. It can be used
from a public computer, or a friend’s machine with no hassle.

The Group Calculator can be accessed at http://hobbes.la.asu.edu/groups/groups.
html. It is free to use, and runs as javascript in the user’s web browser. There are no plug-ins required
making it effectively platform independent. One only needs a web connection and a computer. The

1See Kahneman [1] for a discussion of this research.
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usual barriers to having students access mathematical software have been removed as much as pos-
sible. Section 1 describes features of the Group Calculator. The remaining sections discuss various
applications to the study of group theory. Due to space limitations, we will not discuss every feature
and how it can be used.

1 The Group Calculator
In this section we describe some of the features of the Group Calculator as background for the later
sections.

1.1 Choosing a group
First, one needs to have some examples of groups at their disposal. The Group Calculator allows the
user to select a group from one of several families: cyclic group of order n, dihedral group Dn of
order 2n, the group Z∗n of units modulo n, the abelian group Zn1 × · · · × Znk

, and the affine group
Aff(Zn) = {ax+ b | a ∈ Z∗n and b ∈ Zn} under composition. The affine groups may not be familiar
to some people, even those who teach abstract algebra. However, they give good examples of modest
sized non-abelian groups. After students get acquainted with them through the Group Calculator, they
can do interesting exercises involving them.2

Additionally, the Group Calculator allows the user to select “By order...” for “Group Type”. The
user selects the group order from a menu ranging from 1 to 31, and can then select a group from a
menu of all groups of that order up to isomorphism. In addition to giving easy access to these groups,
this feature has several other advantages. Browsing groups by order helps give students a sense of
how simple/rich the set of groups of order n are, depending on n. Right from the beginning, if directed
to look at groups of prime order, most students can conjecture that there is a unique such group up
to isomorphism, and they can see that conversely, the number of groups tends to be large with the
order is divisible by a big power of a prime. Finally, seeing that the number of groups is usually fairly
modest makes the set of groups (up to isomorphism) seems less daunting. It also motivates one of the
basic problems in group theory — to classify the finite groups of each order.

Usually elements of groups are shown in their natural notation. The Group Calculator also allows
one to pick a “Mystery Group” by specifying a bound on its order and an index. The program then
uses this information to select a group whose order is in the specified range, but then it renames and
shuffles its elements. The identity will be listed first and denoted by e, but the other group elements
are simply named a, b, c, d, f ,. . . The output is deterministic, so that a pair (B, j) where B is the bound
for the order and j is the index will always present the same group in exactly the same way. This can
be used in exercises where the instructor either wants students to identify a group, or to answer other
questions about a group where the names of elements might give away too much information.

2For example, one can deduce the formula for the inverse of an element of Aff(Zn), prove that H = {ax | a ∈ Z∗
n}

and N = {x+ b | b ∈ Zn} are subgroups, that N is a normal subgroup of Aff(Zn), but that H is not a normal subgroup
for n ≥ 3. Moreover, students can use information from the group calculator to identify Aff(Zn) for n ≤ 4 and n = 6
(which are isomorphic to familiar groups best known by other names). Finally, one can use use these groups to construct
other interesting groups, such as the non-abelian group of order 21 which is a subgroup of Aff(Z7).
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1.2 Group tables
Figure 1 shows the Group Calculator after the user has selected Z∗15. In the center is the group table,

Figure 1: The group Z∗15.

with the identity listed first. On the left is a column listing elements of the group. The user can
select/unselect elements by clicking on them in this column. At the bottom are various operations one
can perform on the selected elements. The most common operation comes first, Generate Subgroup.
For example, if the user clicks on one element from the left column and then Generate Subgroup, they
get the cyclic subgroup generated by that element.

Figure 2 shows two screenshots; both are the results of producing cyclic subgroups of Z∗15. In each

Figure 2: The group Z∗15 with the subgroups selected: 〈7〉 on the left and 〈4〉 on the right.

case, all elements of the subgroup are highlighted in the left column, but there are bigger changes to
the group table.

First, the elements of the group table are now in a different order — they are grouped by left
coset of the selected subgroup. The identity element comes first, so the subgroup itself is listed first.

248



The Electronic Journal of Mathematics and Technology, Volume 6, Number 3, ISSN 1933-2823

Second, elements in the table are colored based on their coset. So, the group table for the subgroup
will be shown in the upper left-hand corner of the group table, highlighted in yellow, making it easily
accessible. We will discuss other uses of this in the sections below. This feature can be used to study
the cyclic subgroups of a group, but of course, can be used to generate subgroups from larger subsets
of a group’s elements.

The other buttons after Generate Subgroup perform the following actions. In each case, we denote
by S the set of elements selected before clicking the button.

• Close Under Conj. finds all conjugates of elements of the selected set by elements of G:
{gsg−1 | g ∈ G and s ∈ S}

• Centralizer finds elements of G which commute with every selected element: {g ∈ G | gs =
sg for all s ∈ S}

• [S,S] finds commutators using elements of S: {s1s2s−11 s−12 | s1, s2 ∈ S}

• [S,G] finds commutators of elements of S with elements of G: {sgs−1g−1 | s ∈ S and g ∈ G}

Note that of these constructions, only the centralizer is guaranteed to give a subgroup. Consequently,
clicking on Centralizer triggers the reordering of the group table and coloring of left cosets. The other
buttons simply change the set of elements in the left column which are highlighted.

The second row of buttons allow the user to clear the selections and reset the table (Clear Selec-
tion), and to zoom in or out on the group table (without applying the zoom to the rest of the web
page). It can be useful to zoom out on larger groups. Finally, it contains the button Subgroup to
Diagram which jumps to the subgroup diagram of the group, and if there is a subgroup selected, it is
highlighted in the diagram.

1.3 Subgroup diagrams
The second view of a group provided by the Group Calculator is its subgroup diagram. One can
access it by loading its group table, and then either clicking on Subgroup to Diagram at any time, or
by clicking on the Subgroup Diagram tab at the top of the calculator. In the latter case, one may then
have to click Show Diagram for the program to generate the diagram.

Figure 3 shows the subgroup diagram for D5, the dihedral group of order 10, with one subgroup
selected. The diagram shows all of the subgroups with relevant inclusions. Each subgroup is given
a label of the form dNk where d is the order of the subgroup, and k is an index which counts the
subgroups of order d. The notation is a mnemonic for “subgroup of order d Number k”.

Subgroups are represented by diamonds if they are normal, and by circles if they are not. Con-
jugate subgroups are always positioned next to each other. The user can drag subgroups around the
screen, which is especially useful with complicated diagrams. In doing so, conjugate subgroups will
move together, so dragging a subgroup can clarify if two subgroups are conjugate, or simply next to
each other by accident.

If a specific subgroup is clicked on, it is highlighted and a little more information is given to the
left of the diagram. As shown in Figure 3 where subgroup 2N5 is highlighted, the size of the subgroup
and a minimal generating set is shown on the left.

249



The Electronic Journal of Mathematics and Technology, Volume 6, Number 3, ISSN 1933-2823

Figure 3: Subgroup diagram for D5.

2 Recognizing groups
The Group Calculator provides two views of a given group, its group table and its subgroup diagram.
For small groups, students can learn to recognize a group from either of these views. If the order of
a group is not composite, then it must be cyclic so there is only one group so there is nothing to do.
For other groups of order less than 12, one can distinguish them fairly easily.

First note that one can easily count the elements of order 2 from a group table: count the number
of times the identity appears on the main diagonal and subtract 1 (for the identity itself). From a
subgroup diagram one can just count the subgroups of order 2. For groups of order less then 12, this
combined with the order of the group is enough to distinguish all but two cases.

The first case is the groups of order 8: both Z8 and the quaternion group, Q8, have a unique
element of order 2. These are easily distinguished in a subgroup diagram (Q8 has 3 subgroups of
order 4 but Z8, being cyclic has only 1). In a group table, one can observe that Z8 is abelian (the
group table is symmetric along the main diagonal) whereas Q8 is not.

The other case is the two groups of order 9: Z9 and Z3 × Z3. These are easy to distinguish from
a subgroup diagram by counting subgroups of order 3. With a group table, it is a little more difficult,
but one can still count elements of order 3 (look for a2 = a−1 for a 6= e).

Why do this? On one hand, this kind of recognition may seem to be an auxiliary skill. However,
the things being used to distinguish groups are structural properties of groups which we teach anyway.
Learning to think in those terms reinforces the concepts and theorems in an abstract algebra course
(e.g., that for a cyclic group of order n, there is a unique subgroup of order d for each d dividing n).

Since subgroups of subgroups are subgroups, one can look at the subgroup diagram of a small
group and usually determine the isomorphism types of the subgroups. For example, the subgroup
diagram shown in Figure 4 has three subgroups of order 8. By the method described above, we can
determine that 8N1 ∼= D4, 8N2 ∼= Q8, and 8N3 ∼= Z8. Interestingly, the three subgroups are pairwise
non-isomorphic and include both non-abelian groups of order 8. One would not typically have such
easy access to groups such as this and see its properties so clearly by other means. We will see
applications of these skills in the sections below.
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Figure 4: Subgroup diagram for Z8 : Z2.

3 Normal subgroups and quotient groups
One of the best known applications of group table is given a subgroup H ≤ G, to organize the table
by left cosets of the subgroup and to color the cosets as the Group Calculator does. Then one can ask
if multiplication gives a binary operation on the set of left cosets, i.e., the set of colors. The issue is
whether or not this is well-defined: if aH = a′H and bH = b′H , does (ab)H = (a′b′)H? Algebra
courses typically prove at least the forward direction of the following theorem.

Theorem 1 Let G be a group and H a subgroup of G. Then H is a normal subgroup of G if and only
if

(aH) · (bH) = (ab)H

is a well-defined binary operation on the set of left cosets of H .

With the coloring of group elements by coset and grouping the cosets, it is easy to see at a glance if
the selected subgroup is normal. In Figure 2, both subgroups are normal. As a result, the colors form
nice k by k blocks throughout the table where k is the order of the subgroup. For example, in the
right-hand table from Figure 2, one can see that red times blue is always fuchsia, regardless of which
elements are selected.

On the other hand, in Figure 5, the group table is not comprised of 2 × 2 blocks of color. The
multiplication of colors is not well-defined: red times blue is sometimes fuchsia and sometimes blue.
So, the selected subgroup in that case is not normal.

In both cases, the user can use the Group Calculator to connect what they see as far as the coset
multiplication being well-defined with the more standard criterion for normality, namely that the
subgroup be closed under conjugation. The user can click on Close under Conj.; for the normal
subgroup the number of selected elements will not change but for the non-normal subgroup additional
elements will be selected.
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Figure 5: Dihedral group D4 with a selected subgroup.

In the case of normal subgroups, one can see even more from the colored group table. If N is a
normal subgroup of G, the binary operation on left cosets has the structure of a group, the quotient
group G/N . Identifying cosets with colors, this is equivalent to thinking of the set of colors as forming
a group. The group table for this set of colors is then visible in the colored group table. Referring
again to Figure 2, the group table on the left has only two colors, and it is clear that the table of colors
matches the group table for Z2 with 0↔ yellow and 1↔ blue. Similarly, the group table on the right
has four colors, so it must be the table for either Z4 or V4. For every color C, C ∗ C is yellow, the
identity color. This matches the fact that in V4 = {e, a, b, c}, e = e2 = a2 = b2 = c2. Moreover,
V4 has the property that the product of any two distinct non-identity elements is the third non-identity
element. This is clearly visible in the group table: blue times red is fuchsia, blue times fuchsia is red,
and red times fuchsia is blue.

Dealing with cosets as colors has an added advantage. Cosets are more complicated than we may
want to admit. A coset is a single object, but inside it is a set of elements of a group. One often has to
be able to shift between these two views when thinking about cosets and quotient groups. The use of
colors in a group table facilitates this. Having a set of colors is not as much of a conceptual jump as
a set of sets. On the other hand, when looking at a colored group table, all of the information is there.
One is constantly reminded that cosets consist of sets of elements from the original group – the group
elements are visible through the colors.

Thus far we have considered quotient groups in terms of group tables, but there is an important
theorem which is reflected in the subgroup diagram, namely the lattice isomorphism theorem.
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Theorem 2 (Lattice Isomorphism Theorem) Let G be a group and N a normal subgroup of G.
Then there is a bijection between the set of subgroups of G/N and the set of subgroups of G which
contain N such that:

• normal subgroups correspond to normal subgroups

• the bijection preserves inclusions

• the bijection preserves intersections

• the bijection preserves joins.3

Consider Figure 6. This is a group of order 16 with three normal subgroups of order 2 (recall, normal

Figure 6: Subgroup diagram for Z4 : Z4.

subgroups are represented by diamonds). By the lattice isomorphism theorem, the subgroup diagram
for G/2N2 is the diagram between 2N2 and the whole group. The bijection preserves inclusions
and normality, so it is effectively perfect. Since the subgroups 4N1, 4N2, 4N3, and 4N4 are not
normal, G/2N2 is a group of order 8 with subgroups which are not normal. The only such group is
D4. Similarly, one can identify G/2N3 ∼= Q8 and G/2N1 ∼= Z4 × Z2. The three quotient groups are
pairwise non-isomorphic.

In the same diagram, one might also consider the normal subgroup 4N7. The subgroup itself has
three subgroups of order 2, so 4N7 ∼= V4. The quotient G/4N7 also has three subgroups of order 2
(represented by 8N1, 8N2, and 8N3). So, G/4N7 ∼= V4. Similarly, using skills for recognizing groups
by their subgroup diagrams one can spot that 4N6 ∼= 4N7 ∼= Z4 and G/4N6 ∼= Z4

∼= G/4N7. This
group has a very rich structure and illustrates what one can explore using technology with theorems
from group theory.

3If H and K are subgroups of a group G, their join is the smallest subgroup of G containing both H and K.
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4 Conjugation
The simplest way to look at conjugation with the Group Calculator is to select a group and an ele-
ment of that group, and then click on Close Under Conj.; the conjugacy class of the element will be
highlighted.

One can explore sizes of conjugacy classes further. First, we give some notation and the relevant
theorem. Let G be a group and g ∈ G. The centralizer of g ∈ G is CG(g) = {x ∈ G | xg = gx} and
the conjugacy class of g is ConjG(g) = {xgx−1 | x ∈ G}. These are related by

|ConjG(g)| = [G : CG(g)]. (1)

We have described above how one can readily compute ConjG(g) with the group calculator. One
can compute the centralizer from the group table by simply highlighting the element of interest and
clicking on Centralizer.

For small groups, one can often determine CG(g) from the subgroup diagram. First note that any
power of g commutes with g, so the cyclic subgroup 〈g〉 ⊆ CG(g). Second, CG(g) = G if and only if
g is in the center of G.

So, consider Figure 3, which gives the subgroup diagram for D5. The subgroup 2N1 has order 2,
so it is generated by an element of order 2 which we will call g. One can reason that g is not in the
center of D5.4 So, by the considerations above, we have CG(g) = 2N1. Then equation 1 tells us that
the size of the conjugacy class of g is [G : 2N1] = |G|/|2N1| = 10/2 = 5. This can be confirmed
from the group table by computing the conjugacy class directly. It is also consistent with the fact that
5 subgroups of order 2 are all conjugate since the 5 elements conjugate to g must all have order 2, so
they generate subgroups of order 2 conjugate to 〈g〉.

5 Recognizing decompositions
There are two standard theorems for recognizing groups as products; the one for direct products
is fairly standard for a beginning abstract algebra course while the one for semidirect products is
standard for courses which cover that construction. We state versions of both here for reference.

Theorem 3 Let G be a finite group, and H and K subgroups of G such that

1. H EG and K ≤ G

2. H ∩K = {e}

3. |H| · |K| = |G|

Then G ∼= H oK. If we also have K EG, then G ∼= H ×K.

4If g was in the center, it would commute with elements from the subgroup of order 5. That subgroup has prime order,
so it is cyclic, hence abelian. The whole group is generated by the subgroup of order 5 and g, so if g was central, the
group would be abelian.
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All of the conditions are easy to verify by looking at a subgroup diagram in the Group Calculator.
It allows the user to see the orders of subgroups, whether or not they are normal, and their intersection.
Moreover, if the student has learned to recognize a small group by its order and subgroup diagram,
then they can also see the isomorphism types of the candidate subgroups H and K.

For example, consider the subgroup diagram in Figure 4, a group of order 16. To see if it is a direct
product, we would want to find either normal subgroups of orders 8 and 2 which intersect trivially,
but there are none (the three subgroups of order 8 all contain the normal subgroup of order 2). Next
we check to see if there are two normal subgroups of order 4 which intersect trivially, but there is only
one normal subgroup of order 4. So, this group is not a direct product of proper subgroups.

If we check to see if it is a semidirect product of two subgroups of order 4, again no combinations
work (all subgroups of order 4 contain a common subgroup of order 2). However, this group is a
semidirect product of a subgroup of order 8 and a subgroup of order 2 in essentially 2 ways. For the
subgroup of order 2 one can take 2N3, and for the subgroup of order 8 either 8N3 or 8N2. Recall
8N3 ∼= Z8 and 8N2 ∼= Q8. So, this group is isomorphic to a group Z8 oZ2 and to a group Q8 oZ2.5
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